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Introduction: Boomitra’s MRV Framework for Indian 
Smallholder Farms in our URVARA Project 
Boomitra is committed to delivering inclusive, scientifically rigorous carbon projects. A core 
challenge in soil organic carbon (SOC) monitoring is the cost of traditional sampling at the resolution 
required to track changes at the individual smallholder farm level. For robust project-scale 
measurement, each farm typically requires at least one soil sample—often more. This quickly 
becomes cost-prohibitive given the current economics of carbon credit pricing. 

Even in India—where lab costs are among the lowest globally ($10–$20 per sample for testing alone, 
excluding field collection)—sampling remains economically infeasible for smallholders. SOC 
sequestration rates from regenerative practices in these systems typically range between 0.2 and 
0.7 tC/ha/year (0.7–2.6 tCO₂e/ha/year or 0.004–0.014 wt%/year)1. At prevailing carbon credit prices 
(~$15/tCO₂e at the time of writing 2), the expected credit revenue per hectare is often insufficient to 
justify full-scope sampling. In the best-case scenario, sampling and testing might consume ~25% of 
revenue per hectare. In the worst case, they exceed the value of the credits altogether. These 
figures exclude further project costs related to auditing, registration, and ongoing MRV. 

To overcome this barrier, Boomitra has developed a remote sensing-based soil carbon monitoring 
system that is both cost-effective and scientifically robust. Certified under the Social Carbon 
Standard, this approach pairs satellite-based microwave and VIS-IR imagery with localized ground-
truth data and machine learning. The result is a scalable MRV system capable of measuring SOC 
change across thousands of smallholder farms while maintaining measurement fidelity. 

The system integrates: Microwave backscatter, which probes the soil's dielectric properties at 
depth, and VIS-IR satellite data, which captures surface vegetation signals relevant to improving soil 
modeling. 

Together, these inputs enable accurate estimation of SOC changes across India’s tropical and 
subtropical agricultural landscapes. The measurement framework has undergone detailed 
evaluation as part of validation and verification audits under the Social Carbon Standard, including 
peer-review by independent experts in soil science and remote sensing. Furthermore, the 
framework has taken inputs from Boomitra’s other registered projects under Verra’s VCS Standard, 
ensuring compatibility across leading standards in the carbon markets. 

The following sections outline the complete MRV process—from physical principles and model 
calibration through to uncertainty quantification and project-level crediting—providing transparency 
for technical reviewers, credit buyers, and stakeholders.  

We invite you to submit comments and questions on this work using this form. All submissions 
will be reviewed and addressed, and both the questions/comments and our responses will be 
appended to the end of this document for reference and transparency. 

Section 1: Overall MRV Process Flow 
The MRV process follows a structured approach, integrating satellite data, ground-truth 
measurements, and modeling techniques, following the overarching guidance of the Social Carbon 
SCM5 methodology: 

https://forms.office.com/r/vGJPTRAp22
http://socialcarbon.org/scm0005
http://socialcarbon.org/scm0005
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Figure 1. Overall MRV Process 

The MRV process consists of: 

1. The remote sensing and AI system to measure SOC and bulk density at the pixel-level, 
which is the subject of Section 2. 

2. The associated uncertainty propagation to robustly account for all sources of error in our 
calculations, which is the subject of Section 3. 

3. The necessary unit conversions to get to the soil carbon stock change, and methodology 
equations to calculate the total credits and their vintage breakdown, which is described in 
Section 4. 

This article wraps-up with a discussion of the results across the first set of farms in the project 
(Section 5). 

Section 2: The Science Behind Remote Sensing of SOC 

2.1 Physical Principles of SOC Estimation Using Remote Sensing 
Accurately estimating SOC at scale requires bridging the gap between physical soil properties, 
remote sensing signals, and predictive modeling. This section outlines the scientific principles 
underlying Boomitra’s approach, including the role of microwave interactions with soil, the influence 
of soil structure and composition on the dielectric response, and the use of machine learning 
models to translate remote measurements into reliable SOC stock estimates. 

The foundation of Boomitra's SOC monitoring lies in established scientific principles combined with 
the latest remote sensing and machine learning techniques. The technology leverages satellite-
based microwave remote sensing, particularly in the L- and P-bands, where longer wavelengths on 
the order of several centimeters can penetrate thin vegetation cover and probe the soil beneath3.  
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The depth to which microwaves can penetrate into the soil depends on the microwave wavelength 
and the soil's dielectric properties. Under low soil moisture conditions, the effective sensing depth 
can extend beyond 30 cm for L-band and up to 80 cm for P-band microwaves3. Measuring the soil 
dielectric constant using microwave remote sensing is a well-established method for calculating soil 
moisture, as increasing moisture significantly raises the dielectric constant, thereby increasing the 
microwave energy scattered back from the soil4. 

However, the soil dielectric constant (𝜀!) is influenced by more than just moisture. It can be 
understood as a volumetric weighted average of the soil's solid, liquid, and gaseous components, 
expressed as5:  

𝜀! = (1 − 𝜙)𝜀!,# + 𝜃𝜀!,$ + (𝜙 − 𝜃)𝜀!,% 

where,  

• 𝜺𝒓,𝒔 is the solid-phase dielectric constant, made up of a volumetric weighted sum of the 
dielectric constants of the mineral particles (sand, silt, clay) and soil organic matter (SOM).  

• 𝜺𝒓,𝒍 is the liquid-phase dielectric constant, corresponding to moisture (water, 𝜀!,)*+ = 78.4). 

• 𝜺𝒓,𝒈 is the gaseous-phase dielectric, corresponding to air (atmosphere, 𝜀!,-./ = 1.0006). 

• 𝜽 is the volumetric soil moisture content (vol% or %v/v). 

• 𝝓 is the soil porosity (vol% or %v/v), representing the fraction of the soil volume not 
occupied by solids (e.g., sand, silt, clay, organic matter). 

Among the solid components, while soil texture tends to remain relatively constant over time at a 
given location, SOM levels can vary significantly. The dielectric constants of sand, silt, clay, and 
SOM typically range between 2 and 10, depending on the soil's mineral origin6. Importantly, SOM 
generally exhibits a lower dielectric constant than mineral particles6. Therefore, an increase in SOM 
content tends to reduce the solid-phase dielectric constant 𝜺𝒓,𝒔, which in turn influences the overall 
soil dielectric behavior detectable by remote sensing. 

Porosity, a key descriptor of soil structure linked inversely to bulk density (BD), arises from the 
interplay of soil texture, SOM, and the soil's compaction history (e.g., from heavy equipment or 
livestock). An increase in SOM typically enhances porosity. Empirical studies confirm that both 
porosity and moisture are crucial factors influencing the soil dielectric7.  

Therefore, when soil texture, soil moisture, and compaction history are accounted for, SOC can be 
determined from the dielectric constant, through its effects on decreasing 𝜀!,# and increasing 
porosity, which both collectively decrease the dielectric constant, leading to a diminished 
microwave backscatter.  

At the same time, the above ground vegetation can also have an effect on microwave backscatter. 
The effect is much smaller for crops than for forests, because their cross-sectional area is much 
smaller with respect to microwave wavelengths. Dense forests can prevent the microwave signal 
from reaching the soil, and are thus out of scope for this work. On the other hand, for most cropping 
systems, the effect is primarily a slight attenuation of the like-polarized radar backscatter8. This has 
allowed for algorithms using microwave satellite data to measure soil moisture, a measurement that 
is routinely used in weather prediction systems today9. 
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Extensive literature has shown that crops can be well-measured through multispectral satellite 
data10. Thus, to effectively disentangle the contributions of vegetation and soil to the microwave 
signal and to learn the complex empirical relationship between the measured soil dielectric and 
SOC, Boomitra employs a machine learning (ML) model that fuses data from various spectral 
ranges, including visible, infrared, and microwave bands.  

Furthermore, when soil texture and compaction history are known and considered constant, BD and 
SOC often exhibit an inverse correlation. This relationship can be captured by a region-specific 
pedotransfer function (PTF)11, allowing BD—and subsequently, the total soil carbon stock in tons per 
hectare—to be estimated once SOC, soil 
texture, and compaction are known. Note that 
soil texture is stable over human timescales at a 
given location, and compaction history can be 
determined from activity monitoring at each 
farm participating in the project. Several PTFs 
are available in the literature, with varying levels 
of accuracy, but the most accurate PTFs are 
those that are very narrow in their scope of 
use11. For this reason, Boomitra builds custom 
PTFs with localized calibration soil data in order 
to reach maximum accuracy for the different soil 
types within a given project. 

Once calibrated, the model can be applied to 
new locations within its calibration scope (e.g., 
areas with similar soil type and clima6c condi6ons), 
using the learned relationship to convert 
microwave-derived dielectric measurements 
into SOC estimates. BD is then derived via the 
PTF, enabling the final soil carbon stock 
calculation. 

 

Figure 2. Model prediction process to determine soil organic carbon stock. The measurement of microwave 
backscatter provides soil dielectric data that is causally related to the SOC (above) and the combination of 
different data sources through machine learning enables a robust prediction (below). Data sources are 
described further in the subsequent sections.  
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Hence, the theoretical basis relies on four assumptions: 

1. Microwave backscatter can directly measure the soil dielectric constant (to 30-80cm depth, 
depending on the wavelength used). 

2. Soil dielectric is causally related to SOC, decreasing as SOC increases, when moisture, 
texture, and compaction history are known. 

3. SOC and BD are correlated under constant soil texture and compaction history, allowing a 
customized PTF to estimate BD from SOC. 

4. ML models trained on absolute SOC levels use the space-for-time substitution to track SOC 
changes over time. This assume that covariates explaining spatial differences in SOC can 
also explain temporal changes. This is related to Assumption 2—if Assumption 2 is true and 
the soil dielectric, and thus microwave backscatter, is causally related to SOC, then it is 
more plausible for the space-for-time substitution to be applicable. If the model has then 
learned the same mechanism, it can translate its learnings from spatial variation into 
temporal variation. 

The validity of Assumption 1 is maintained by limiting the scope of this work to only appropriate 
cropping regions where it is true (eg. no dense tree cover etc.). Assumption 3 is shown to be valid 
below in the implementation of our project’s custom PTFs. Assumptions 2 and 4 have been 
independently validated through matched-pairs controlled trials across different regions, with 
results to be published in upcoming peer-reviewed journal articles. 

2.2 Model Calibration Dataset for Indian Croplands 
The practical implementation of this framework is tested across the diverse croplands of India, 
which encompass a wide range of cropping systems, from staples like rice and wheat to cash crops 
such as banana and sugarcane. A variety of regenerative agricultural practices are promoted across 
the project area, include crop residue retention and reincorporation, organic fertilizer application, 
crop rotations, cover cropping, and intercropping with legumes. These practices are adapted 
regionally across the states of Karnataka, Maharashtra, Tamil Nadu, Madhya Pradesh, Andhra 
Pradesh, and Kerala, reflecting the diverse cropping systems present in the project area. The project 
currently has 8,000 farms, and the average farm size is 1.2 ha, which is very close to the 1.08 ha 
average size across the country reported by Indian census data12.  

India experiences distinct wet (monsoon) and dry seasons, which vary regionally13. The driest 
months, typically January to May, are generally ideal for remote sensing-based SOC quantification 
in rainfed areas, as the confounding effect of soil moisture is minimized. However, with about 55% of 
Indian farms having access to irrigation14, SOC measurements for these farms are best taken 
between cropping seasons (Rabi: Oct-Mar; Kharif: Jun-Oct) when irrigation is off. Therefore, the 
period from March to May is suitable for irrigated farms as well, lacking both active irrigation and 
monsoon rains.  

The SOC machine learning model calibration relies primarily on ground-truth data from India's 
extensive Soil Health Card (SHC) program, a government initiative under the National Mission for 
Sustainable Agriculture (NMSA)15. This program has generated over 911,712 georeferenced soil 
samples from 2015 to 2022, analyzed for SOC using the Walkley-Black method, a widely used wet 
chemistry technique that is the most common SOC testing method in India. Sampling density is 
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approximately one sample per 2.5 hectares in irrigated areas and one sample per 10 hectares in 
rainfed areas. Each sample was composited from multiple subsamples within a farm field and 
analyzed at the nearest district-level NMSA laboratory, typically located at the main Krishi Vigyan 
Kendra (KVK)—India’s governmental agricultural extension network office—within the district. This 
approach ensures nationwide cropland coverage and adherence to a standardized protocol for 
collection, processing, testing, and reporting.  

The SHC dataset provides SOC (wt%), sample location, and collection date. The dataset's mean 
SOC is 0.600wt% (standard deviation 0.515wt%, with values generally ranging from 0 to 3wt%) 
aligning well with independent literature that cites average SOC on Indian farms around 0.7wt%16.  
The calibration data undergoes cleaning, primarily restricting SOC values to the 0-3wt% range, 
which involves removing less than 0.5% of the total samples identified as outliers. This range covers 
the vast majority of samples, as the distribution count diminishes significantly beyond 1.5wt% 
(Figure 3). 

 

Figure 3. Distribution of SOC in calibration dataset 

Although the SHC dataset shows good spatial coverage across most agricultural regions of India 
(Figure 4), there are parts of the desert regions in north-west India, forested regions in central India, 
and mountainous sections in the far north and north-east that lack soil sampling. As a result, these 
areas are outside the model’s domain, and precautions are taken to exclude farms located there 
from the project. 
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Figure 4. The SHC soil samples (N=911,712) as a spatial heat map by SOC level. Each pixel above is 0.1 x 0.1 
degrees and its color represents the number of SOC samples within the pixel 

A limitation of the SHC dataset is the absence of BD data, a common issue in many soil surveys. To 
address this and enable the model to learn the necessary SOC-BD relationships, data from the 
World Soil Information Service (WoSIS) is utilized17. WoSIS aggregates global soil data, harmonized 
through standardized definitions, procedure descriptions, plausibility checks, and units. From 
WoSIS, approximately 34,000 samples having SOC, BD, and soil texture data, and corresponding to 
FAO soil types found in Indian croplands, were selected for building the pedotransfer functions.  

For consistency with the SOC model training, the WoSIS data used was primarily restricted to 
samples analyzed using the Walkley-Black method for SOC (about 80% of samples) and sampled to 
30cm depth. The WoSIS dataset provides geocoordinates, sampling depths, sampling dates, SOC 
(wt%), and BD (ton/m³). This careful selection and harmonization process, ensuring consistency in 
analytical methods (Walkley-Black, expected uncertainty ~0.10wt%) and sampling depth across 
both SHC and the utilized WoSIS subset, is crucial for building robust models.  

The representativeness of these calibration datasets with respect to the project areas' climate 
zones and soil types is thoroughly assessed and confirmed. The tables below confirm that 
thousands of calibration samples exist for each key soil type and climate zone combination present 
in the initial project farms, ensuring adequate representation. 

IPCC Climate Zone18* Number of Calibration Soil 
Samples 

Number of Project Farms 

Tropical Dry 231,488 4,241 

Tropical Moist 75,251 2,988 

Tropical Wet 41,832 781 
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FAO Soil Type19* Number of Calibration Soil 
Samples 

Number of Project Farms 

Acrisol 3,610 1,392 

Cambisol 27,108 356 

Luvisol 122,570 2,800 

Nitosol 60,171 1,069 

Vertisol 47,575 2,393 

* The calibration soil samples cover many more soil types and climate zones, but the five soil types 
and three climate zones given here are the only ones found among the farms currently in the 
project. 

2.3 Model Validation Datasets  

Beyond calibration, the project implements ongoing validation through the collection of new soil 
samples from project farms prior to each verification period. This involves stratified random 
sampling, with strata defined by FAO soil types19, selecting approximately 30-50 farms per stratum 
(determined based on the minimum number of samples conservatively needed to show R2>0 for the 
model, one of the key validation metrics). Composite samples (5-10 subsamples in a zig-zag pattern 
covering the farm) are collected to 30cm depth and sent refrigerated to a lab within 3 days. These 
validation samples are tested for SOC using the gold-standard dry combustion method and for BD 
via oven drying and weighing. For the first verification, 200 such samples were collected in 2024 
across the five soil types found within the project’s farms (Luvisols, Acrisols, Vertisols, Nitosols, 
Cambisols). 

To ensure reliable validation results, a rigorous lab selection process was undertaken due to India's 
large size precluding the use of a single lab. Blind testing was performed using split samples from 15 
project farms sent to three private labs (all nationally certified), and ICRISAT (an internationally 
recognized CGIAR and FAO GLOSOLAN20 regional focal point lab). ICRISAT and two of the labs 
showed good intra-lab consistency (0.2-0.3wt% variation), while the third private lab exhibited 
higher variation (>1wt%) and was excluded. Inter-lab comparisons revealed systematic, correctable 
differences between the remaining three labs, allowing their results to be harmonized using ICRISAT 
as the benchmark. The 200 validation samples were subsequently tested at these three selected 
and harmonized labs. 

2.4 Satellite Covariates 
Satellite data is sourced from multiple platforms to provide comprehensive inputs for the models: 

 



 

Boomitra’s MRV Framework for Monitoring Soil Carbon in Indian Smallholder Farms 11 

 

A consistent 10m x 10m pixel size is used for analysis, matching Sentinel-2's native resolution in the 
visible spectrum; ALOS-2 data and other Sentinel-2 bands are downscaled using bicubic 
interpolation, while the coarser SMAP/SMOS data is used without resampling. Each 10m pixel 
represents 1/100th of a hectare. For each ground sample location, satellite data is extracted from 
the overlapping pixel. L-Band SAR data (ALOS or ALOS-2) is chosen based on the image date 
closest to the soil sample date. Corresponding Sentinel-2 data is then selected, prioritizing the 
cloud-free and shadow-free pixel closest in time to the SAR image, using ESA's 'sen2cor' tool for 
masking. Radiometer-derived soil moisture data is collected for the date matching the chosen ALOS 
SAR image. Data retrieval is automated using Python scripts. The satellites used (from NASA, JAXA, 
ESA) have long-term operational support, ensuring data continuity for the project's duration. 
Specific satellite image IDs used for each farm’s soil carbon calculations are archived internally, to 
allow for reproducibility. 

2.5 Model Calibration  
The initial training of the SOC model involves segmenting the calibration data by FAO soil type, 
recognizing that soil texture significantly influences the relationship between satellite data and SOC. 
For each soil type present in the project (Luvisols, Acrisols, Nitosols, Vertisols, and Cambisols at first 
verification), a separate Random Forest (RF) ensemble model is trained using the scikit-learn library 
in Python. RF is a well-established algorithm that has shown success in various remote sensing 
applications, and it was chosen after trying several different regression algorithms (support vectors, 

Satellite Sensor 
Type 

Bands Used Spatial 
Resolution 

Revisit 
Time 

Availabilit
y 

Region Source Pre-Processing 

Sentinel-
2 

Multi-
Spectr
al  

Visible (Bands 1-4); 
Red-Edge (Bands 5-
7, 8a) Near Infrared 
(Band 8);  
Short Wave Infrared 
(Bands 10-12); Water 
Vapor (Band 9) 

10m 
(Bands 2, 
3, 4, 8); 
20m 
(Bands 5, 
6, 7, 8a, 
11, 12); 
60m 
(Bands 1, 
9, 10) 

5 days 2016-
Present 

Global ESA The Copernicus Data 
Store Level-2A product21 
is used, which has all 
bands atmospherically 
corrected to surface 
reflectance. 

ALOS-2 SAR L-Band: 
HH (like-polarized); 
HV (cross-polarized); 
Incidence Angle 

25m 1 year 2014-
Present 

Global JAXA22  The SAR Mosaic 
product23 is used, which 
has undergone the 
conventional SAR-
specific corrections: 
orbit corrections, ortho-
rectification, radiometric 
slope corrections, and 
conversion to gamma0, 
as detailed in the 
dataset description 

SMAP24 Radio-
meter 

L-Band: processed 
to soil moisture 

9km 2-3 
days 

2015-
Present 

Global NASA 
ASF/ ESA 
CDS 

The “Combined” satellite 
soil moisture product 
provided by the Climate 
Data Store (CDS)25, 
which has processed to 
radiometer data to a 
volumetric soil moisture 
level (% v/v) 

SMOS26 Radio-
meter 

Same as SMAP 40km 3 days 2009-
Present 

Global ESA CDS Same as SMAP 
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neural nets, kernel ridge regression, gradient boosting etc.) to minimize test RMSE. All mined 
satellite bands (15 covariates total) are used directly as inputs to the RF. A 90-10 train-test split is 
employed. Model hyperparameters, such as the number of estimators and tree depth (e.g., 700 
estimators, depth 1 for Luvisols), were optimized through trial and error. The performance for the 
most prevalent soil type, Luvisols (covering 35% of project farms), shows the model's calibration on 
training (n=110,313) and testing (n=12,257) data from the SHC dataset (2015-2021). 

 

Figure 5. Calibration of the ML model for the remote sensing of SOC. The performance on the train data 
(n=110,313 farms sampled) (a) and test data (n=12,257 farms sampled) (b) is shown using the SHC 
calibration dataset (years 2015-2021) for India, as heatmaps. Summary statistics are in the table below. Due 
to the large N, the observed slopes of observed vs predicted SOC for all soil types are statistically 
significant with p<0.0001. 

Summary statistics calculated on the test data for all relevant soil types indicate the initial model 
performance across the project's diverse soil conditions: 

Soil Type # Calibration Samples Test RMSE (wt%) Test R2 

Luvisol 122,570 0.309 0.123 

Acrisol 3,610 0.276 0.348 

Vertisol 47,575 0.112 0.072 

Nitosol 60,171 0.216 0.095 

Cambisol 27,108 0.178 0.156 

Complementary to the SOC model, a pedotransfer function (PTF) is developed to estimate bulk 
density (BD). Recognizing that BD is inversely related to porosity and influenced by soil texture 
(sand, silt, clay) and SOM, non-linear PTFs are built using the prepared WoSIS dataset. Similar to the 
SOC model, the WoSIS data is segmented by FAO soil type, and a separate gradient-boosting model 
(scikit-learn implementation) is trained for each type. These models use sand percentage, silt 
percentage, and predicted SOC percentage as covariates to predict BD. Hyperparameters were 

a b 
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tuned to minimize test RMSE (e.g., 100 estimators, depth 10). For the Luvisol soil type example, 
using 555 WoSIS samples split 70-30 for training and testing, the PTF performance is illustrated. 

 

Figure 6. Calibration of the pedotransfer function (PTF) for the determination of BD from SOC, sand and silt 
percentages in lithisols. The performance on the train data (a) and test data (b) is shown. The graphs are in 
units ton/m3 (equivalent to g/cm3). There are 388 train data points, and 167 test data points (70-30 train-
test split) 

The test performance metrics for the BD PTFs across the project's soil types are summarized below: 

Soil Type BD PTF Test RMSE (ton/m³) BD PTF Test R2 

Luvisol 0.214 0.353 

Cambisol 0.193 0.411 

Acrisol 0.177 0.563 

Vertisol 0.184 0.432 

Nitosol 0.251 0.469 

By combining the remote sensing derived SOC (wt%) and the remote sensing & PTF-derived BD 
(ton/m³), the final soil carbon stock (ton CO₂e/ha) can be calculated for each pixel within the project 
area. 

2.6 Model Validation Metrics 
The ongoing validation process provides a continuous check on the model's performance under real 
project conditions. Before calculating the validation metrics, the new validation samples are 
incorporated into the modeling process through a leave-one-out simple linear fine-tuning of the 
initially trained remote sensing ML model output (i.e. a model of the form a + b * SOC to correct the 
model output for soil data harmonization between the calibration data distribution and the validation 
lab measurements). This final step ensures that the results are more comparable to the validation 
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sampling and testing. The model outputs are then compared against the lab measurements from the 
validation samples to compute key performance indicators including RMSE, R², bias (assessed via t-
test for significance at the 5% level), and the 90% Prediction Interval Coverage Probability (PICP) 
test, which indicates the percentage of validation samples whose actual values fall within the 
model's 90% prediction interval. These validation metrics were chosen following consultation with 
remote sensing and soil experts convened by Verra, as part of the registry-led project review of the 
registration of our Verra projects – these same requirements have been carried over to this Social 
Carbon project. 

The comparison for Luvisols (N=35 farms) is given below: 

 

Figure 7. Remote Sensed vs Sampled SOC for the Luvisol validation set 

Across all the soil types: 

Soil 
Type 

Validation RMSE 
(ton C/ha) 

Validation 
R2 

Bias Significance (5% 
t-test) 

90% PICP 
(%) 

Luvisol 5.3 0.113 5E-4 (not significant) 91 

Acrisol 6.3 0.110 4E-4 (not significant ) 90 

Vertisol 5.7 0.091 2E-5 (not significant) 93 

Nitosol 5.0 0.083 3E-6 (not significant) 92 

Cambisol 7.6 0.121 9E-4 (not significant) 91 
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Note that the prediction interval in the PICP is calculated using the uncertainty propagation 
techniques described in the next section, and thus passing the PICP test is a validation of the 
uncertainty calculation method as well. 

These metric calculations and checks are repeated with each new set of validation samples 
collected throughout the project's lifetime, ensuring the continued appropriateness of the model 
and its associated uncertainty quantification. 

Are these metrics good enough, when prediction errors are propagated to the project-level? This is 
answered in the next section. 

Section 3: Uncertainty Quantification 

3.1 Sources of Uncertainty  
Achieving accurate quantification of soil carbon changes necessitates a comprehensive and 
rigorous assessment of uncertainty from all potential sources. The remote sensing methodology 
employed, while powerful, carries different types of uncertainty compared to traditional soil 
sampling. Conventional methods, even with precise lab analysis like dry combustion (individual 
sample uncertainty ~0.02wt%27), face significant uncertainty when scaling up to field or project 
levels due to sampling error – the error introduced by measuring only a small fraction of the total 
area. Reaching a high level of observability (e.g., detecting a 0.01wt% change) with conventional 
sampling might require hundreds of samples per field. Remote sensing, by measuring every pixel 
(e.g., 10m x 10m) across the entire project area, effectively reduces this specific type of sampling 
error but introduces other uncertainties related to the measurement and modeling process itself.    

The uncertainty associated with the remote sensing model outputs arises from several key 
sources28: 

1. Noise in the input data (raw satellite data), which is a form of random error  
2. Model Imperfection: Random error in the model weights, arising during training of the 

model, and systematic errors wherein the model is unable to capture certain characteristics 
of the underlying soil carbon variation. Model imperfection can stem from the chosen 
machine learning architecture, the training process, inherent errors in the training data SOC 
targets (e.g., ~0.10wt% uncertainty associated with the Walkley-Black method), unknown 
variations in ground sample collection procedures, and pre-processing steps like 
spatialization – matching point-based soil samples to pixel-based satellite data. 

3. Potentially incomplete coverage of the domain of soil carbon levels in the calibration data. 
This is minimized by using extensive, representative datasets like the Soil Health Card in 
India and verifying coverage across relevant soil types, climate zones, and SOC ranges as 
done in the section above.    

In addition, there are 2 types of correlations to be accounted when pixel-level results are 
aggregated to the farm-level and project-level  

• Spatial Correlations28: Pixels that are closer to each other are likely to have higher 
correlation in soil carbon stocks and the input satellite data than pixels that are farther away 
from each other. Nearby pixels are not independent.  

• Temporal Correlations: For a given pixel, the absolute soil carbon stocks at each 
subsequent measurement are expected to be correlated across time, because expected 
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stock changes are small relative to the absolute level (for example, if SOC starts at 1%, it is 
expected to remain in the 0.9%-1.1% range over the next 5 years29). Measurements of the 
same pixel across time are not independent. 

Failing to account for these correlations, particularly the degree of spatial correlation when 
averaging, can lead to an underestimation or overestimation of the true uncertainty at the 
aggregated level. This effect is well-established in the geostatistics literature. The figure below 
graphically demonstrates this effect: 

 

Figure 8. The effect of spatial correlation on the spatial average – weaker correlation leads to lower 
uncertainty in the spatial average. In the presence of strong spatial correlation, each sample contributes 
less independent information, limiting the reduction in uncertainty typically achieved through averaging. 
Therefore, accounting for spatial correlation is essential to avoid overestimating confidence in aggregated 
values. 

A related challenge is model drift over time, where the relationships learned during calibration may 
become less accurate. This could manifest as label drift (changes in the range of SOC values 
beyond the calibration set, deemed unlikely for the range of carbon in the farms of this project), 
covariate drift (changes in satellite sensor characteristics, mitigated by using normalized data 
products), or concept drift (fundamental changes in the relationship between satellite signals and 
soil properties). Concept drift might arise from broad systemic changes (e.g., due to climate change 
effects on soil moisture, minimized by strategic measurement timing; or major policy shifts altering 
land use, which are monitored) or potentially from the project activities themselves, although the 
practices promoted are not expected to cause unexpected changes in soil structure beyond those 
correlated with SOC. Ongoing validation sampling serves as a crucial check for potential model 
drift.    

Figure 1: Spatial Averaging Effects with Different Autocorrelation Patterns
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3.2 Bayesian Approach to Uncertainty Quantification  
To comprehensively address these uncertainty sources and correlations, the project employs a 
Bayesian Monte Carlo approach, specifically utilizing Bayesian Regression Kriging30, a technique 
well-suited for quantifying map errors holistically. This involves running multiple simulations (e.g., 
100) to generate a posterior predictive distribution (PPD) for the SOC stock at each pixel. In each 
simulation, the ML model is retrained on a random subset (e.g., 70%) of the calibration data, 
capturing uncertainty in model parameters arising from input noise and model imperfection. A 
variogram is fitted to the residuals of this model subset to characterize spatially correlated 
systematic errors, and a simulated residual based on this variogram is added to each pixel's 
prediction. The collection of results across all simulations forms the pixel-level PPD.    

These pixel-level PPDs are then averaged within each farm boundary to produce a farm-level PPD, a 
process that inherently accounts for the spatial correlations between pixels within the farm. To 
determine the uncertainty of the change in SOC stock over a monitoring period, the farm-level PPD 
from the start date of the monitoring period is differenced from the farm-level PPD at the end date. 
This differencing operation correctly accounts for temporal correlations between the 
measurements. The resulting distribution is the farm-level SOC Stock Change PPD. The mean of this 
Change PPD provides the best estimate of the farm's SOC stock change over the period, while the 
variance (or standard deviation) of this distribution quantifies the standard error associated with 
that estimate, taking into account input errors, model imperfections, spatial correlations within the 
farm and temporal correlations across the monitoring period. Figure 8 summarizes the full 
uncertainty process for a farm:   

 

Figure 9. The full process associated with the Bayesian Regression Kriging uncertainty propagation for the 
soil carbon stock measurement through remote sensing in the India project.  

An example calculation for a typical 1.5 ha project farm in Karnataka implementing common 
practices illustrates this process, with N=100 simulations and 70% sampling in each simulation. The 
resulting farm-level PPDs for SOC stock each year and the Change PPD for the 2021-2024 period 
are shown as boxplots:    
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Figure 10. Example farm-level soil carbon Predictive Posterior Distributions (PPDs) from 2021 to 2024 in 
boxplots (top, a) and the soil carbon change PPD from 2021 to 2024 as a boxplot (bottom left, b). The 
whiskers in the boxplot represent the 5th and 95th percentile, which are used to show whether the results 
are significant at a 5% significance level. 

For this example farm, the standard deviation of the 3-year SOC stock change was found to be 2.0 
ton CO₂e/ha. This translates to a minimum detectable difference (MDD) or prediction interval width 
of approximately 3.2 to 3.6 ton CO₂e/ha at a 5% significance level.  

Importantly, achieving statistical significance for the project overall does not require every individual 
farm's change to exceed its specific MDD, but rather for the overall project’s change to do so. To 
determine the total project uncertainty, the farm-level Change PPDs are aggregated by area-
weighted averaging across all participating farms. This aggregation directly incorporates the spatial 
covariance between different farms, ensuring a robust estimate of the overall project-level 
uncertainty. The variance of the final project-level PPD reflects the effects of these inter-farm 
spatial covariances. 

Section 4: Quantification of Net Carbon Removals 
The quantification of carbon removals for this project adheres to the SCM0005 V2.0 methodology, 
specifically employing Quantification Approach 2. This approach is characterized as a 'measure and 
remeasure' strategy, where SOC stocks are determined at different points in time. SOC stocks at 
these time points are quantified using Boomitra's remote sensing technology, as detailed in the 
previous sections, and the remaining steps follow equations in the methodology.  

The net carbon removals from the project are calculated using the following equation: 

NERy = (TERy x (1-UNCy) ) -PEy - LEy 

Where 

NERy Net Emission Removals in year 𝑦; tCO2e 

TERy Total project GHG removals in year 𝑦; tCO2e 

UNCy Total uncertainty in project GHG removals in year 𝑦; percent 

a bc 
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PEy Total project GHG emissions in year 𝑦; tCO2e 

LEy Leakage of emissions associated with the project in year 𝑦; tCO2e 

The project-level SOC stock change, derived at the end of the previous section, is prorated by day 
to each year within the monitoring period, to determine TERy. 

Project emissions (PEy) arising from the implementation of project activities themselves are 
currently considered negligible for this project (see a more detailed analysis in the full project 
design document (PDD)). However, should any activities lead to quantifiable emissions during 
implementation or monitoring, these would be reported in subsequent monitoring cycles.    

Leakage (LEy), representing emissions occurring outside the project boundary due to project 
activities, is assumed to be zero. This assumption is justified based on the SCM0005 methodology 
criteria: the project does not involve the application of new manure sourced from outside the project 
area, and significant productivity declines (greater than 5%) are not anticipated based on literature 
and project design. Crop productivity will be monitored every ten years as required, and if declines 
exceeding 5% attributable to project activities are observed (after excluding initial adjustment years 
if necessary), leakage calculations would be performed according to the methodology. Furthermore, 
surveys and regional studies indicate that the diversion of biomass like crop residue for soil 
incorporation under the project does not lead to increased use of non-renewable biomass (e.g., 
firewood) for other purposes like cooking, as most households in the project region have 
transitioned to cleaner energy sources such as LPG or improved cookstoves.    

An essential component of the net removal calculation is the uncertainty deduction (UNCy). This 
deduction accounts for the statistical uncertainty associated with the estimate of total project 
removals. Following quantification approach 2, the uncertainty arises primarily from the 
measurement error associated with determining the SOC stock change. This project utilizes the 
variance derived from the aggregated Posterior Predictive Distributions (PPDs) for SOC stock 
change to quantify this uncertainty, as described in the previous section. The relative uncertainty is 
calculated, and a deduction is applied only if this value exceeds a 15% threshold. The formula for 
the uncertainty deduction is:    

UNCy = MIN

⎝

⎛100%,MAX

⎝

⎛0,
T@A𝑆2∆𝑆𝑂𝐶𝑦000000000 + 𝑆2∆𝑡𝑟𝑒𝑒𝑦0000000000 + 𝑆2∆𝑠ℎ𝑟𝑢𝑏𝑦000000000000B

∆𝐶𝑂2𝑦CCCCCCCCC − 15%		

⎠

⎞		 

Where 

UNCy Total uncertainty; percent 

T Critical value of a student’s t-distribution for significance level 𝛼 = 0.05 
(i.e., a 1 − 𝛼 = 95% confidence interval) and the degrees of freedom 𝑑𝑓 
appropriate for the design used (e.g., df = 𝑛 − 1 for a simple random 
sample of 𝑛 sample units) 

∆CO2.((((((((( Areal average carbon dioxide emission removals in year y, as 
determined in the previous section; t CO2e/unit area 
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S/∆012"333333333 Variance of the estimate of mean emission removals from Soil in year y, 
as determined through the Bayesian approach in the previous section; 
(tCO2e/unit area)2 

S*∆2344"0000000000 Variance of the estimate of mean emission removals from Trees in year 
y; (tCO2e/unit area)2 

S*∆56378"000000000000 Variance of the estimate of mean emission removals from Shrubs in year 
y; (tCO2e/unit area)2 

15% Threshold beyond which there is an uncertainty deduction 

 
In this project, there are no activities leading to tree/shrub planting or removal, so those terms are 
not used (they are zero). 

On the scale of the real project, the farm-level carbon removal between the 2021 and 2024 (the first 
monitoring period) shows an approximate range from 0 to 4.5, with the density of the distribution 
declining as carbon removal increases (which is expected): 

 

Figure 11. Distribution of carbon sequestration across the farms in the project, as a histogram (left) and 
boxplot (right). 

Similarly, the standard error in carbon removal (standard deviation of the farm stock change PPD) 
exhibits most of its range between 0.2 and 3: 
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Figure 12. Distribution of the standard error in carbon sequestration across the farms in the project, as a 
histogram (left) and boxplot (right). 

The farm-level numbers are available from the project’s registry listing. When aggregated to the 
project level, through the processes and equations of the last section and this section, this project 
shows a project-level standard error of 0.0379 ton CO2e/ha, and a cumulative carbon removal of  
52,570 ton CO2e in the first monitoring period (47,311 ton CO2e after deducting buffer). These final 
calculations are also available in the registry listing. 

Section 5: Discussion and Limitations 

5.1 Interpreting the Sequestration Results in Context 
The observed mean soil carbon sequestration rate during the initial monitoring period (2021–2024) 
was approximately 0.5 tC/ha/year (1.7 tCO₂e/ha/year or 0.01 wt%/year) across participating farms. 
This aligns with global literature for similar regenerative agriculture practices. Multiple meta-
analyses place sequestration potential from interventions such as residue incorporation, organic 
fertilizer use, and cover cropping in the range of 0.2–0.7 tC/ha/year (0.7–2.6 tCO₂e/ha/year or 
0.004–0.014 wt%/year).31 

Figure 12 illustrates these ranges across various management practices (e.g., no-till vs. tillage 
intensity, cover cropping, composting) and climate zones. Green bars indicate tropical regions like 
those in this project. 
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Figure 13. Meta-analysis of sequestration rates across several improved agricultural management studies. 
Green represents tropical climates, red subtropical, and blue temperate. Management practices: Inorganic 
fertilizer - no fertilizer (IF-NF); Increased organic matter input (M2): Combined fertilizer relative to No 
Fertilizer (COF-NF), Combined Straw +fertilizer relative to No Fertilizer (CRF-NF), Organic Fertilizer relative 
to Inorganic Fertilizer (OF-IF), Organic Fertilizer relative to No Fertilizer (OF-NF); Decreased tillage (M3): 
No-Till relative to High Intensity-Till (NT-HT), No-Till relative to Intermediate Intensity-Till (NT-IT) and 
Intermediate Intensity-Till relative to High Intensity-Till (IT-HT); Increased crop diversity (M4): Crop rotation 
+cover crops (CC) and perennial crop rotation (CCP); Crop residue incorporation (M5): crop residue 
incorporation vs. removal (CRES). Adapted from Lessman et al.31 

This project’s rates fall within these expected ranges. Importantly, the sequestration rate is 
expected to decrease over time as soils reach a new equilibrium, unless additional practices are 
introduced. This trajectory reflects natural saturation dynamics of soil carbon systems. 
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5.2 Model Strengths and Practical Value 
The remote sensing MRV system used in this project offers major advantages over traditional 
approaches: 

• Significant Cost Reduction: Traditional approaches would require sampling each of the 
8,000+ smallholder farms. This project instead utilizes a few hundred well-distributed 
samples for validation, reducing costs dramatically while maintaining scientific integrity. 

• Improved Sampling Quality: By requiring fewer samples overall, we are able to deploy a 
small team of highly trained field technicians and work exclusively with trusted laboratories, 
ensuring scientific accuracy and rapid turnaround times. Soil sampling is a precise science—
if a much larger volume of samples were needed in a short timeframe, it would be infeasible 
to rely on expert teams alone. That would introduce greater risk of error from less 
experienced personnel and inter-lab variability, both of which are common challenges in 
traditional soil carbon testing.  

• Reproducibility and Transparency: The system’s reliance on publicly available satellite 
images and consistent machine learning models ensures reproducible outputs. Any third 
party could repeat the process using the same input data and model to yield identical SOC 
estimates. 

• Audit-Ready and Registry-Consistent: The system meets the technical requirements for 
both the Social Carbon standard and overlapping expectations from Verra’s VCS. Validation 
results include RMSE, R², bias testing (t-test), and prediction interval coverage probability 
(PICP), each updated with every verification cycle. 

5.3 Limitations and Considerations 
While the methodology is robust within its design parameters, several important limitations must be 
acknowledged: 

• Regional Calibration: The model is developed specifically for Indian cropping systems and 
soil types. Application outside these areas would require recalibration with local datasets 
and soil validation. 

• Bulk Density (BD) Estimation Constraints: The BD pedotransfer function assumes relatively 
stable soil compaction history or changes that are tightly correlated with SOC. This 
assumption may not hold immediately following a transition to no-till agriculture, where bulk 
density can increase temporarily in ways not directly related to SOC. Although this limitation 
is specific to no-till systems, which are not promoted within the URVARA project, it's 
important to clarify that some international readers may expect to see no-till included due to 
its popularity in the U.S. and Europe. However, no-till is generally avoided in this project 
context because it often increases weed pressure, which can lead to greater reliance on 
herbicides—conflicting with the organic principles followed by many of our implementation 
partners. 

• Decadal and Climate-Driven Soil Changes: Over 30–100 year timescales, broader shifts 
such as erosion, climate-induced changes to moisture regimes, or altered cropping patterns 
could affect the validity of initial calibration. This is mitigated through ongoing validation and 
the requirement for a full baseline reassessment every 10 years. 
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5.4 Robustness in Reversal Monitoring 
One of the most impactful benefits of remote sensing is its ability to continuously monitor all farms 
in the project—even after an individual farmer exits. Conventional soil-sampling-based projects 
often assume a 100% reversal (i.e., total loss of credited carbon) if the farmer leaves the project, due 
to the inability to revisit or resample the site. In contrast, Boomitra’s system enables continued SOC 
measurement through remote sensing, allowing any actual loss to be measured and accounted for 
without defaulting to total forfeiture. 

This approach provides a major advantage in terms of permanence and reversal monitoring and is 
particularly crucial for building large-scale soil carbon projects with a 100+ year permanence 
guarantee.. 

5.5 Advantages of Ex-Post Credit Issuance 
This project issues carbon credits exclusively on an ex-post basis, i.e., only after SOC changes are 
measured through both remote sensing and ground validation. This sharply contrasts with many 
projects that rely on ex-ante credit issuance where credits are generated in advance based on 
future projections without measurement-based confirmation. 

Key differences: 

• Ex-Post (This Project): Credits are issued only after SOC changes are directly measured 
and verified during each monitoring period. While machine learning models are used in this 
process, they operate only within the context of observed satellite data and calibrated 
relationships that are validated with ground truth for each measurement timepoint. These 
are not forward projections across time, and credits are never issued based on modeled 
outputs alone. 

• Ex-Ante (Not Used Here): Several projects commonly issue credits based on predicted 
SOC increases before any measurement takes place. The credits are later adjusted ('true-
upped') when new data is available, leading to possible over-crediting or under-crediting in 
the interim. This project avoids such practices entirely, reinforcing confidence in the 
resulting credits. 

Boomitra’s conservative, measurement-based, ex-post approach enhances credibility with credit 
buyers and aligns more closely with emerging standards for high-integrity carbon removal. 

5.6 Remote Sensing for High-Quality, Scalable MRV 
The remote sensing model employed here addresses many challenges faced by soil carbon 
projects: 

• It reduces per-farm MRV cost to enable participation by smallholders. 
• It increases temporal resolution and reliability of data. 
• It ensures that credits reflect real, measurable carbon removal. 

Moreover, it builds resilience into the project design—capable of adjusting to changing field 
conditions, verifying ongoing performance, and supporting robust credit issuance throughout the 
multi-decade lifecycle of a soil carbon project. 
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Remote sensing has the potential to solve many of the challenges that soil carbon projects face 
today, from monitoring reliability to cost. Boomitra is proud to lead the way in bringing this 
technology to farms of all sizes around the world. 

Appendix A: Reader Questions and Responses 
We invite you to submit comments and questions on this work using this form. All submissions 
will be reviewed and addressed, and this appendix will be updated regularly with submitted 
questions and comprehensive author responses. 
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